Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.324
Filtrar
2.
Proc Natl Acad Sci U S A ; 121(16): e2315123121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38602915

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.


Assuntos
Hipertensão Pulmonar , Interleucina-6 , Camundongos , Ratos , Animais , Interleucina-6/genética , Interleucina-6/farmacologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Receptor gp130 de Citocina/genética , Linfócitos T CD4-Positivos/patologia , Hipóxia/patologia , Artéria Pulmonar/patologia
3.
BMC Pulm Med ; 24(1): 194, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649898

RESUMO

BACKGROUND: Patients with congenital myopathies may experience respiratory involvement, resulting in restrictive ventilatory dysfunction and respiratory failure. Pulmonary hypertension (PH) associated with this condition has never been reported in congenital ryanodine receptor type 1(RYR1)-related myopathy. CASE PRESENTATION: A 47-year-old woman was admitted with progressively exacerbated chest tightness and difficulty in neck flexion. She was born prematurely at week 28. Her bilateral lower extremities were edematous and muscle strength was grade IV-. Arterial blood gas analysis revealed hypoventilation syndrome and type II respiratory failure, while lung function test showed restrictive ventilation dysfunction, which were both worse in the supine position. PH was confirmed by right heart catheterization (RHC), without evidence of left heart disease, congenital heart disease, or pulmonary artery obstruction. Polysomnography indicated nocturnal hypoventilation. The ultrasound revealed reduced mobility of bilateral diaphragm. The level of creatine kinase was mildly elevated. Magnetic resonance imaging showed myositis of bilateral thigh muscle. Muscle biopsy of the left biceps brachii suggested muscle malnutrition and congenital muscle disease. Gene testing revealed a missense mutation in the RYR1 gene (exon33 c.C4816T). Finally, she was diagnosed with RYR1-related myopathy and received long-term non-invasive ventilation (NIV) treatment. Her symptoms and cardiopulmonary function have been greatly improved after 10 months. CONCLUSIONS: We report a case of RYR1-related myopathy exhibiting hypoventilation syndrome, type II respiratory failure and PH associated with restrictive ventilator dysfunction. Pulmonologists should keep congenital myopathies in mind in the differential diagnosis of type II respiratory failure, especially in patients with short stature and muscle weakness.


Assuntos
Hipertensão Pulmonar , Debilidade Muscular , Insuficiência Respiratória , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Feminino , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Pessoa de Meia-Idade , Debilidade Muscular/etiologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Insuficiência Respiratória/etiologia , Mutação de Sentido Incorreto , Imageamento por Ressonância Magnética , Doenças Musculares/genética , Doenças Musculares/diagnóstico , Doenças Musculares/complicações
4.
Front Immunol ; 15: 1371706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650935

RESUMO

Pulmonary hypertension (PH) pathogenesis is driven by inflammatory and metabolic derangements as well as glycolytic reprogramming. Induction of both interleukin 6 (IL6) and transglutaminase 2 (TG2) expression participates in human and experimental cardiovascular diseases. However, little is known about the role of TG2 in these pathologic processes. The current study aimed to investigate the molecular interactions between TG2 and IL6 in mediation of tissue remodeling in PH. A lung-specific IL6 over-expressing transgenic mouse strain showed elevated right ventricular (RV) systolic pressure as well as increased wet and dry tissue weights and tissue fibrosis in both lungs and RVs compared to age-matched wild-type littermates. In addition, IL6 over-expression induced the glycolytic and fibrogenic markers, hypoxia-inducible factor 1α, pyruvate kinase M2 (PKM2), and TG2. Consistent with these findings, IL6 induced the expression of both glycolytic and pro-fibrogenic markers in cultured lung fibroblasts. IL6 also induced TG2 activation and the accumulation of TG2 in the extracellular matrix. Pharmacologic inhibition of the glycolytic enzyme, PKM2 significantly attenuated IL6-induced TG2 activity and fibrogenesis. Thus, we conclude that IL6-induced TG2 activity and cardiopulmonary remodeling associated with tissue fibrosis are under regulatory control of the glycolytic enzyme, PKM2.


Assuntos
Fibroblastos , Proteínas de Ligação ao GTP , Hipertensão Pulmonar , Interleucina-6 , Pulmão , Camundongos Transgênicos , Proteína 2 Glutamina gama-Glutamiltransferase , Piruvato Quinase , Transglutaminases , Animais , Transglutaminases/metabolismo , Transglutaminases/genética , Interleucina-6/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Camundongos , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Fibroblastos/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/etiologia , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Fibrose , Humanos , Modelos Animais de Doenças , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia
5.
Ann Card Anaesth ; 27(2): 128-135, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607876

RESUMO

INTRODUCTION: Extra Corporeal Membrane Oxygenation (ECMO) has long been used for cardiorespiratory support in the immediate post-paediatric cardiac surgery period with a 2-3% success as per the ELSO registry. Success in recovery depends upon the optimal delivery of critical care to paediatric patients and a comprehensive healthcare team. METHODOLOGY: The survival benefit of children placed on central veno arterial (VA) ECMO following elective cardiac surgeries for congenital heart disease (n = 672) was studied in a cohort of 29 (4.3%) cases from the period of Jan 2018 to Dec 2022 in our cardiac surgical centre. Indications for placing these patients on central VA ECMO included inability to wean from cardiopulmonary bypass (CPB), low cardiac output syndrome, severe pulmonary arterial hypertension, significant bleeding, anaphylaxis, respiratory failure and severe pulmonary edema. RESULTS: The mean time to initiation of ECMO was less than 5 h and the mean duration of ECMO support was 56 h with a survival rate of 58.3%. Amongst perioperative complications, sepsis and arrhythmia on ECMO were found to be negatively associated with survival. Improvements in the pH, PaO2 levels and serum lactate levels after initiation of ECMO were associated with survival benefits. CONCLUSION: The early initiation of ECMO for paediatric cardiotomies could be a beacon of hope for families and medical teams confronting these challenging situations. Improvement in indicators of adequate perfusion and ventricular recoveries like pH and serum lactate and absence of arrhythmia and sepsis are associated with good outcomes.


Assuntos
Oxigenação por Membrana Extracorpórea , Hipertensão Pulmonar , Sepse , Humanos , Criança , Arritmias Cardíacas , Poder Psicológico , Lactatos
6.
Cardiol Clin ; 42(2): 273-278, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631794

RESUMO

Pulmonary hypertension is a challenging disease entity with various underlying etiologies. The management of patients with pulmonary arterial hypertension (WHO Group 1) remains challenging especially in the critical care setting. With risk of high morbidity and mortality, these patients require a multidisciplinary team approach at a speciality care facility for pulmonary hypertension for comprehensive evaluation and rapid initiation of treatment. For acute decompensated right heart failure, management should concentrate on optimizing preload and after load with use of pulmonary vasodilator therapy. A careful evaluation of specialized situations is required for appropriate treatment response.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Emergências , Vasodilatadores/uso terapêutico , Cuidados Críticos
7.
Echocardiography ; 41(4): e15812, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634241

RESUMO

BACKGROUND: Precapillary pulmonary hypertension (PH) is characterized by a sustained increase in right ventricular (RV) afterload, impairing systolic function. Two-dimensional (2D) echocardiography is the most performed cardiac imaging tool to assess RV systolic function; however, an accurate evaluation requires expertise. We aimed to develop a fully automated deep learning (DL)-based tool to estimate the RV ejection fraction (RVEF) from 2D echocardiographic videos of apical four-chamber views in patients with precapillary PH. METHODS: We identified 85 patients with suspected precapillary PH who underwent cardiac magnetic resonance imaging (MRI) and echocardiography. The data was divided into training (80%) and testing (20%) datasets, and a regression model was constructed using 3D-ResNet50. Accuracy was assessed using five-fold cross validation. RESULTS: The DL model predicted the cardiac MRI-derived RVEF with a mean absolute error of 7.67%. The DL model identified severe RV systolic dysfunction (defined as cardiac MRI-derived RVEF < 37%) with an area under the curve (AUC) of .84, which was comparable to the AUC of RV fractional area change (FAC) and tricuspid annular plane systolic excursion (TAPSE) measured by experienced sonographers (.87 and .72, respectively). To detect mild RV systolic dysfunction (defined as RVEF ≤ 45%), the AUC from the DL-predicted RVEF also demonstrated a high discriminatory power of .87, comparable to that of FAC (.90), and significantly higher than that of TAPSE (.67). CONCLUSION: The fully automated DL-based tool using 2D echocardiography could accurately estimate RVEF and exhibited a diagnostic performance for RV systolic dysfunction comparable to that of human readers.


Assuntos
Aprendizado Profundo , Hipertensão Pulmonar , Disfunção Ventricular Direita , Humanos , Volume Sistólico , Função Ventricular Direita , Ecocardiografia/métodos
9.
Eur Radiol Exp ; 8(1): 50, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570418

RESUMO

BACKGROUND: Heartbeat-based cross-sectional area (CSA) changes in the right main pulmonary artery (MPA), which reflects its distensibility associated with pulmonary hypertension, can be measured using dynamic ventilation computed tomography (DVCT) in patients with and without chronic obstructive pulmonary disease (COPD) during respiratory dynamics. We investigated the relationship between MPA distensibility (MPAD) and respiratory function and how heartbeat-based CSA is related to spirometry, mean lung density (MLD), and patient characteristics. METHODS: We retrospectively analyzed DVCT performed preoperatively in 37 patients (20 female and 17 males) with lung cancer aged 70.6 ± 7.9 years (mean ± standard deviation), 18 with COPD and 19 without. MPA-CSA was separated into respiratory and heartbeat waves by discrete Fourier transformation. For the cardiac pulse-derived waves, CSA change (CSAC) and CSA change ratio (CSACR) were calculated separately during inhalation and exhalation. Spearman rank correlation was computed. RESULT: In the group without COPD as well as all cases, CSACR exhalation was inversely correlated with percent residual lung volume (%RV) and RV/total lung capacity (r = -0.68, p = 0.003 and r = -0.58, p = 0.014). In contrast, in the group with COPD, CSAC inhalation was correlated with MLDmax and MLD change rate (MLDmax/MLDmin) (r = 0.54, p = 0.020 and r = 0.64, p = 0.004) as well as CSAC exhalation and CSACR exhalation. CONCLUSION: In patients with insufficient exhalation, right MPAD during exhalation was decreased. Also, in COPD patients with insufficient exhalation, right MPAD was reduced during inhalation as well as exhalation, which implied that exhalation impairment is a contributing factor to pulmonary hypertension complicated with COPD. RELEVANCE STATEMENT: Assessment of MPAD in different respiratory phases on DVCT has the potential to be utilized as a non-invasive assessment for pulmonary hypertension due to lung disease and/or hypoxia and elucidation of its pathogenesis. KEY POINTS: • There are no previous studies analyzing all respiratory phases of right main pulmonary artery distensibility (MPAD). • Patients with exhalation impairment decreased their right MPAD. • Analysis of MPAD on dynamic ventilation computed tomography contributes to understanding the pathogenesis of pulmonary hypertension due to lung disease and/or hypoxia in patients with expiratory impairment.


Assuntos
Hipertensão Pulmonar , Pneumopatias , Doença Pulmonar Obstrutiva Crônica , Masculino , Humanos , Feminino , Artéria Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/complicações , Estudos Retrospectivos , Pulmão/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/complicações , Tomografia Computadorizada por Raios X/métodos , Hipóxia/complicações
10.
JACC Cardiovasc Interv ; 17(8): 1073-1075, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38658125
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 425-431, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660909

RESUMO

Pulmonary arterial hypertension (PAH) is a severe disease characterized by abnormal pulmonary vascular remodeling and increased right ventricular pressure load, posing a significant threat to patient health. While some pathological mechanisms of PAH have been revealed, the deeper mechanisms of pathogenesis remain to be elucidated. In recent years, bioinformatics has provided a powerful tool for a deeper understanding of the complex mechanisms of PAH through the integration of techniques such as multi-omics analysis, artificial intelligence, and Mendelian randomization. This review focuses on the bioinformatics methods and technologies used in PAH research, summarizing their current applications in the study of disease mechanisms, diagnosis, and prognosis assessment. Additionally, it analyzes the existing challenges faced by bioinformatics and its potential applications in the clinical and basic research fields of PAH in the future.


Assuntos
Biologia Computacional , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/etiologia
12.
Respir Res ; 25(1): 164, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622598

RESUMO

BACKGROUND: Balloon pulmonary angioplasty (BPA) improves the prognosis of chronic thromboembolic pulmonary hypertension (CTEPH). Right ventricle (RV) is an important predictor of prognosis in CTEPH patients. 2D-speckle tracking echocardiography (2D-STE) can evaluate RV function. This study aimed to evaluate the effectiveness of BPA in CTEPH patients and to assess the value of 2D-STE in predicting outcomes of BPA. METHODS: A total of 76 patients with CTEPH underwent 354 BPA sessions from January 2017 to October 2022. Responders were defined as those with mean pulmonary artery pressure (mPAP) ≤ 30 mmHg or those showing ≥ 30% decrease in pulmonary vascular resistance (PVR) after the last BPA session, compared to baseline. Logistic regression analysis was performed to identify predictors of BPA efficacy. RESULTS: BPA resulted in a significant decrease in mPAP (from 50.8 ± 10.4 mmHg to 35.5 ± 11.9 mmHg, p < 0.001), PVR (from 888.7 ± 363.5 dyn·s·cm-5 to 545.5 ± 383.8 dyn·s·cm-5, p < 0.001), and eccentricity index (from 1.3 to 1.1, p < 0.001), and a significant increase in RV free wall longitudinal strain (RVFWLS: from 15.7% to 21.0%, p < 0.001). Significant improvement was also observed in the 6-min walking distance (from 385.5 m to 454.5 m, p < 0.001). After adjusting for confounders, multivariate analysis showed that RVFWLS was the only independent predictor of BPA efficacy. The optimal RVFWLS cutoff value for predicting BPA responders was 12%. CONCLUSIONS: BPA was found to reduce pulmonary artery pressure, reverse RV remodeling, and improve exercise capacity. RVFWLS obtained by 2D-STE was an independent predictor of BPA outcomes. Our study may provide a meaningful reference for interventional therapy of CTEPH.


Assuntos
Angioplastia com Balão , Hipertensão Pulmonar , Embolia Pulmonar , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/terapia , Embolia Pulmonar/diagnóstico por imagem , Embolia Pulmonar/terapia , Remodelação Ventricular , Ecocardiografia , Doença Crônica , Artéria Pulmonar/diagnóstico por imagem
13.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612795

RESUMO

Growing evidence suggests the crucial involvement of inflammation in the pathogenesis of pulmonary hypertension (PH). The current study analyzed the expression of interleukin (IL)-17a and IL-22 as potential biomarkers for PH in a preclinical rat model of PH as well as the serum levels in a PH patient collective. PH was induced by monocrotalin (60 mg/kg body weight s.c.) in 10 Sprague Dawley rats (PH) and compared to 6 sham-treated controls (CON) as well as 10 monocrotalin-induced, macitentan-treated rats (PH_MAC). Lung and cardiac tissues were subjected to histological and immunohistochemical analysis for the ILs, and their serum levels were quantified using ELISA. Serum IL levels were also measured in a PH patient cohort. IL-22 expression was significantly increased in the lungs of the PH and PH_MAC groups (p = 0.002), whereas increased IL17a expression was demonstrated only in the lungs and RV of the PH (p < 0.05) but not the PH_MAC group (p = n.s.). The PH group showed elevated serum concentrations for IL-22 (p = 0.04) and IL-17a (p = 0.008). Compared to the PH group, the PH_MAC group demonstrated a decrease in IL-22 (p = 0.021) but not IL17a (p = n.s.). In the PH patient collective (n = 92), increased serum levels of IL-22 but not IL-17a could be shown (p < 0.0001). This elevation remained significant across the different etiological groups (p < 0.05). Correlation analysis revealed multiple significant relations between IL-22 and various clinical, laboratory, functional and hemodynamic parameters. IL-22 could serve as a promising inflammatory biomarker of PH with potential value for initial diagnosis, functional classification or even prognosis estimation. Its validation in larger patients' cohorts regarding outcome and survival data, as well as the probability of promising therapeutic target structures, remains the object of further studies.


Assuntos
Hipertensão Pulmonar , Humanos , Animais , Ratos , Ratos Sprague-Dawley , Hipertensão Pulmonar/diagnóstico , 60552 , Biomarcadores , Ensaio de Imunoadsorção Enzimática
14.
Sci Rep ; 14(1): 8705, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622180

RESUMO

This study investigated whether late pulmonary hypertension (LPH) independently increases the risk of long-term mortality or neurodevelopmental delay (NDD) in extremely preterm infants (EPIs) with severe bronchopulmonary dysplasia (BPD). Using prospectively collected data from the Korean Neonatal Network, we included EPIs with severe BPD born at 22-27 weeks' gestation between 2013 and 2021. EPIs having severe BPD with LPH (LPH, n = 124) were matched 1:3 with those without pulmonary hypertension (PH) as controls (CON, n = 372), via propensity score matching. LPH was defined as PH with the initiation of medication after 36 weeks' corrected age (CA). Long-term mortality after 36 weeks' CA or NDD at 18-24 months' CA was analyzed. NDD was assessed using composite scores based on various neurodevelopmental assessment modalities. LPH had significantly higher long-term mortality or NDD (45.2% vs. 23.1%, P < 0.001), mortality (24.2% vs. 4.84%, P < 0.001), and NDD (68.4% vs. 37.8%, P = 0.001), respectively than CON, even after adjusting for different demographic factors. Multivariable regression demonstrated that LPH independently increased the risk of mortality or NDD (adjusted odds ratio, 1.95; 95% confidence intervals, 1.17-3.25). When LPH occurs in EPIs with severe BPD, special monitoring and meticulous care for long-term survival and neurodevelopment are continuously needed.


Assuntos
Displasia Broncopulmonar , Hipertensão Pulmonar , Lactente , Humanos , Recém-Nascido , Displasia Broncopulmonar/complicações , Displasia Broncopulmonar/tratamento farmacológico , Lactente Extremamente Prematuro , Hipertensão Pulmonar/tratamento farmacológico , Idade Gestacional
15.
Sci Rep ; 14(1): 8670, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622371

RESUMO

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Pulmonar/tratamento farmacológico , Osteopontina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Artéria Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Autofagia/genética , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular
16.
BMJ Open Respir Res ; 11(1)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604738

RESUMO

INTRODUCTION: People living with HIV (PLHIV) have a higher risk of developing pulmonary hypertension (PH) with subsequent poorer prognosis. This review aimed to determine the (1) survival outcomes and (2) proportion of emergency department (ED) visits and hospitalisations of PLHIV and PH. METHODS: We conducted a systematic review and meta-analysis of observational studies reporting survival outcomes for PLHIV and PH. Electronic databases (Medline, EMBASE, PubMed, Web of Science, Global Index Medicus and Cochrane Library), trial registries and conference proceedings were searched until 22 July 2023. We pooled similar measures of effect, assessed apriori subgroups and used meta-regression to determine mortality and associated variables. RESULTS: 5248 studies were identified; 28 studies were included with a total of 5459 PLHIV and PH. The mean survival (95% CI) of PLHIV and PH was 37.4 months (29.9 to 44.8). Participants alive at 1, 2 and 3 years were 85.8% (74.1% to 95.0%), 75.2% (61.9% to 86.7%) and 61.9% (51.8% to 71.6%), respectively. ED visits and hospitalisation rates were 73.3% (32.5% to 99.9%) and 71.2% (42.4% to 94.2%), respectively. More severe disease, measured by echocardiogram, was associated with poorer prognosis (ß -0.01, 95% CI -0.02 to 0.00, p=0.009). Survival was higher in high-income countries compared with lower-income countries (ß 0.50, 95% CI 0.28 to 0.73, p<0.001) and in Europe compared with the America (ß 0.56, 95% CI 0.37 to 0.75, p<0.001). CONCLUSION: Our study confirms poor prognosis and high healthcare utilisation for PLHIV and PH. Prognosis is associated with country income level, geographic region and PH severity. This highlights the importance of screening in this population. PROSPERO REGISTRATION NUMBER: CRD42023395023.


Assuntos
Infecções por HIV , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/epidemiologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Hospitalização , Infecções por HIV/complicações , Infecções por HIV/epidemiologia
17.
Physiol Rep ; 12(7): e15999, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38610069

RESUMO

Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Ratos , Quinase I-kappa B , Miócitos de Músculo Liso , Artéria Pulmonar , Remodelação Vascular
18.
BMC Pulm Med ; 24(1): 199, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654208

RESUMO

BACKGROUND: Fractional exhaled nitric oxide (FeNO) has been extensively studied in various causes of pulmonary hypertension (PH), but its utility as a noninvasive marker remains highly debated. The objective of our study was to assess FeNO levels in patients with idiopathic pulmonary arterial hypertension (IPAH) and mixed connective tissue disease complicating pulmonary hypertension (MCTD-PH), and to correlate them with respiratory functional data, disease severity, and cardiopulmonary function. METHODS: We collected data from 54 patients diagnosed with IPAH and 78 patients diagnosed with MCTD-PH at the Shanghai Pulmonary Hospital Affiliated to Tongji University. Our data collection included measurements of brain natriuretic peptide (pro-BNP), cardiopulmonary exercise test (CPET), pulmonary function test (PFT), impulse oscillometry (IOS), and FeNO levels. Additionally, we assessed World Health Organization functional class (WHO-FC) of each patient. RESULTS: (1) The fractional exhaled concentration of nitric oxide was notably higher in patients with IPAH compared to those with MCTD-PH. Furthermore, within the IPAH group, FeNO levels were found to be lower in cases of severe IPAH compared to mild IPAH (P = 0.024); (2) In severe pulmonary hypertension as per the WHO-FC classification, FeNO levels in IPAH exhibited negative correlations with FEV1/FVC (Forced Expiratory Velocity at one second /Forced Vital Capacity), MEF50% (Maximum Expiratory Flow at 50%), MEF25%, and MMEF75/25% (Maximum Mid-expiratory Flow between 75% and 25%), while in severe MCTD-PH, FeNO levels were negatively correlated with R20% (Resistance at 20 Hz); (3) ROC (Receiving operator characteristic curve) analysis indicated that the optimal cutoff value of FeNO for diagnosing severe IPAH was 23ppb; (4) While FeNO levels tend to be negatively correlated with peakPETO2(peak end-tidal partial pressure for oxygen) in severe IPAH, in mild IPAH they had a positive correlation to peakO2/Heart rate (HR). An interesting find was observed in cases of severe MCTD-PH, where FeNO levels were negatively correlated with HR and respiratory exchange ratio (RER), while positively correlated with O2/HR throughout the cardiopulmonary exercise test. CONCLUSION: FeNO levels serve as a non-invasive measure of IPAH severity. Although FeNO levels may not assess the severity of MCTD-PH, their significant makes them a valuable tool when assessing severe MCTD-PH.


Assuntos
Teste de Esforço , Hipertensão Pulmonar Primária Familiar , Doença Mista do Tecido Conjuntivo , Óxido Nítrico , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Doença Mista do Tecido Conjuntivo/complicações , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Hipertensão Pulmonar Primária Familiar/diagnóstico , Hipertensão Pulmonar Primária Familiar/complicações , Biomarcadores/análise , Biomarcadores/metabolismo , Testes de Função Respiratória , Teste da Fração de Óxido Nítrico Exalado , Índice de Gravidade de Doença , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/diagnóstico , Peptídeo Natriurético Encefálico/metabolismo , China , Idoso
19.
An Acad Bras Cienc ; 96(3): e20230446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655920

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by right ventricular failure and diminished cardiac output, potentially leading to renal and bone impairments. In contrast, resistance exercise training (RT) offers cardiovascular and bone health benefits. This study aimed to assess the impacts of stable PAH induced by monocrotaline (MCT) and RT on renal morphometry, as well as bone morphometry and biomechanical properties in male Wistar rats. Four experimental groups, untrained control (UC, n=7), trained control (TC, n=7), untrained hypertensive (UH, n=7), trained hypertensive (TH, n=7), were defined. After the first MCT or saline injection (20 mg/kg), trained rats were submitted to a RT program (i.e., Ladder climbing), 5 times/week. Seven days later the rats received the second MCT or saline dose. After euthanasia, renal and femoral histomorphometry and femoral biomechanical properties were assessed. PAH reduced renal glomerular area and volume, which was prevented by the RT. While PAH did not harm the femoral morphometry, structural and mechanical properties, RT improved the femoral parameters (e.g., length, percentage of trabeculae and bone marrow, ultimte and yield loads). Experimental stable PAH promotes renal but not bone damages, whereas RT prevents renal deteriorations and improves the femoral morphological and biomechanical properties.


Assuntos
Modelos Animais de Doenças , Rim , Monocrotalina , Condicionamento Físico Animal , Ratos Wistar , Treinamento de Força , Animais , Masculino , Condicionamento Físico Animal/fisiologia , Ratos , Rim/fisiopatologia , Rim/patologia , Treinamento de Força/métodos , Hipertensão Arterial Pulmonar/fisiopatologia , Fêmur/patologia , Fêmur/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/induzido quimicamente
20.
PeerJ ; 12: e17039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590700

RESUMO

Background: Acute pulmonary embolism (APE) is classified as a subset of diseases that are characterized by lung obstruction due to various types of emboli. Current clinical APE treatment using anticoagulants is frequently accompanied by high risk of bleeding complications. Recombinant hirudin (R-hirudin) has been found to have antithrombotic properties. However, the specific impact of R-hirudin on APE remains unknown. Methods: Sprague-Dawley (SD) rats were randomly assigned to five groups, with thrombi injections to establish APE models. Control and APE group rats were subcutaneously injected with equal amounts of dimethyl sulfoxide (DMSO). The APE+R-hirudin low-dose, middle-dose, and high-dose groups received subcutaneous injections of hirudin at doses of 0.25 mg/kg, 0.5 mg/kg, and 1.0 mg/kg, respectively. Each group was subdivided into time points of 2 h, 6 h, 1 d, and 4 d, with five animals per point. Subsequently, all rats were euthanized, and serum and lung tissues were collected. Following the assessment of right ventricular pressure (RVP) and mean pulmonary artery pressure (mPAP), blood gas analysis, enzyme-linked immunosorbnent assay (ELISA), pulmonary artery vascular testing, hematoxylin-eosin (HE) staining, Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining, immunohistochemistry, and Western blot experiments were conducted. Results: R-hirudin treatment caused a significant reduction of mPAP, RVP, and Malondialdehyde (MDA) content, as well as H2O2 and myeloperoxidase (MPO) activity, while increasing pressure of oxygen (PaO2) and Superoxide Dismutase (SOD) activity. R-hirudin also decreased wall area ratio and wall thickness to diameter ratio in APE rat pulmonary arteries. Serum levels of endothelin-1 (ET-1) and thromboxaneB2 (TXB2) decreased, while prostaglandin (6-K-PGF1α) and NO levels increased. Moreover, R-hirudin ameliorated histopathological injuries and reduced apoptotic cells and Matrix metalloproteinase-9 (MMP9), vascular cell adhesion molecule-1 (VCAM-1), p-Extracellular signal-regulated kinase (ERK)1/2/ERK1/2, and p-P65/P65 expression in lung tissues. Conclusion: R-hirudin attenuated pulmonary hypertension and thrombosis in APE rats, suggesting its potential as a novel treatment strategy for APE.


Assuntos
Hominidae , Hipertensão Pulmonar , Embolia Pulmonar , Trombose , Ratos , Animais , Hipertensão Pulmonar/tratamento farmacológico , Ratos Sprague-Dawley , Hirudinas/farmacologia , Peróxido de Hidrogênio/uso terapêutico , Embolia Pulmonar/complicações , Trombose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...